neural network - NeuQuant.js (JavaScript color quantization) hidden bug in JS conversion -


neuquant.js works when image width , height multiple of 100:

300x300 animated gif 300x300

otherwise, there bug:

299x300 animated gif 299x300

(these made this web app.)

i'm 90% sure bug in neuquant.js. have made tests using jsgif , omggif, , both encoders have same bug. obvious photographic images (quantize 256 colors) when image size other multiple of 100.

if understand neural networks, color quantization, and/or issues porting as3 js, please take look. original porter has abandoned project, , close working!


here my code implements in worker omggif:

importscripts('omggif.js', 'neuquant.js');   var rgba2rgb = function (data) {   var pixels = [];   var count = 0;   var len = data.length;   ( var i=0; i<len; i+=4 ) {     pixels[count++] = data[i];     pixels[count++] = data[i+1];     pixels[count++] = data[i+2];   }   return pixels; }  var rgb2num = function(palette) {   var colors = [];   var count = 0;   var len = palette.length;   ( var i=0; i<len; i+=3 ) {     colors[count++] = palette[i+2] | (palette[i+1] << 8) | (palette[i] << 16);   }   return colors; }  self.onmessage = function(event) {   var frames = event.data.frames;   var frameslength = frames.length;   var delay = event.data.delay / 10;    var starttime = date.now();    var buffer = new uint8array( frames[0].width * frames[0].height * frameslength * 5 );   var gif = new gifwriter( buffer, frames[0].width, frames[0].height, { loop: 0 } );   // var pixels = new uint8array( frames[0].width * frames[0].height );    var addframe = function (frame) {     var data = frame.data;      // make palette neuquant.js     var nqinpixels = rgba2rgb(data);     var len = nqinpixels.length;     var npix = len / 3;     var map = [];     var nq = new neuquant(nqinpixels, len, 10);     // initialize quantizer     var palettergb = nq.process(); // create reduced palette     var palette = rgb2num(palettergb);     // map image pixels new palette     var k = 0;     (var j = 0; j < npix; j++) {       var index = nq.map(nqinpixels[k++] & 0xff, nqinpixels[k++] & 0xff, nqinpixels[k++] & 0xff);       // usedentry[index] = true;       map[j] = index;     }      gif.addframe( 0, 0, frame.width, frame.height, new uint8array( map ), { palette: new uint32array( palette ), delay: delay } );   }    // add frames   (var = 0; i<frameslength; i++) {     addframe( frames[i] );     self.postmessage({       type: "progress",        data: math.round( (i+1)/frameslength*100 )      });   }    // finish   var string = '';   ( var = 0, l = gif.end(); < l; ++ ) {     string += string.fromcharcode( buffer[ ] );   }    self.postmessage({     type: "gif",      data: string,     framecount: frameslength,     encodetime: math.round( (date.now()-starttime)/10 ) / 100   }); }; 

and of neuquant.js:

/* * neuquant neural-net quantization algorithm * ------------------------------------------ *  * copyright (c) 1994 anthony dekker *  * neuquant neural-net quantization algorithm anthony dekker, 1994. see * "kohonen neural networks optimal colour quantization" in "network: * computation in neural systems" vol. 5 (1994) pp 351-367. discussion of * algorithm. *  * party obtaining copy of these files author, directly or * indirectly, granted, free of charge, full , unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right , license deal in * software , documentation files (the "software"), including without * limitation rights use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of software, , permit persons * receive copies such party so, requirement being * copyright notice remain intact. */  /* * class handles neural-net quantization algorithm * @author kevin weiner (original java version - kweiner@fmsware.com) * @author thibault imbert (as3 version - bytearray.org) * @version 0.1 as3 implementation */  //import flash.utils.bytearray;  neuquant = function() {     var exports = {};     /*private_static*/ var netsize/*int*/ = 256; /* number of colours used */      /* 4 primes near 500 - assume no image has length large */     /* divisible 4 primes */      /*private_static*/ var prime1/*int*/ = 499;     /*private_static*/ var prime2/*int*/ = 491;     /*private_static*/ var prime3/*int*/ = 487;     /*private_static*/ var prime4/*int*/ = 503;     /*private_static*/ var minpicturebytes/*int*/ = (3 * prime4);      /* minimum size input image */     /*     * program skeleton ---------------- [select samplefac in range 1..30] [read     * image input file] pic = (unsigned char*) malloc(3*width*height);     * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output     * image header, using writecolourmap(f)] inxbuild(); write output image using     * inxsearch(b,g,r)     */      /*     * network definitions -------------------     */      /*private_static*/ var maxnetpos/*int*/ = (netsize - 1);     /*private_static*/ var netbiasshift/*int*/ = 4; /* bias colour values */     /*private_static*/ var ncycles/*int*/ = 100; /* no. of learning cycles */      /* defs freq , bias */     /*private_static*/ var intbiasshift/*int*/ = 16; /* bias fractions */     /*private_static*/ var intbias/*int*/ = (1 << intbiasshift);     /*private_static*/ var gammashift/*int*/ = 10; /* gamma = 1024 */     /*private_static*/ var gamma/*int*/ = (1 << gammashift);     /*private_static*/ var betashift/*int*/ = 10;     /*private_static*/ var beta/*int*/ = (intbias >> betashift); /* beta = 1/1024 */     /*private_static*/ var betagamma/*int*/ = (intbias << (gammashift - betashift));      /* defs decreasing radius factor */     /*private_static*/ var initrad/*int*/ = (netsize >> 3); /*                                                          * 256 cols, radius                                                          * starts                                                          */      /*private_static*/ var radiusbiasshift/*int*/ = 6; /* @ 32.0 biased 6 bits */     /*private_static*/ var radiusbias/*int*/ = (1 << radiusbiasshift);     /*private_static*/ var initradius/*int*/ = (initrad * radiusbias); /*                                                                    * ,                                                                    * decreases                                                                    *                                                                    */      /*private_static*/ var radiusdec/*int*/ = 30; /* factor of 1/30 each cycle */      /* defs decreasing alpha factor */     /*private_static*/ var alphabiasshift/*int*/ = 10; /* alpha starts @ 1.0 */     /*private_static*/ var initalpha/*int*/ = (1 << alphabiasshift);     /*private*/ var alphadec/*int*/ /* biased 10 bits */      /* radbias , alpharadbias used radpower calculation */     /*private_static*/ var radbiasshift/*int*/ = 8;     /*private_static*/ var radbias/*int*/ = (1 << radbiasshift);     /*private_static*/ var alpharadbshift/*int*/ = (alphabiasshift + radbiasshift);      /*private_static*/ var alpharadbias/*int*/ = (1 << alpharadbshift);      /*     * types , global variables --------------------------     */      /*private*/ var thepicture/*bytearray*//* input image */     /*private*/ var lengthcount/*int*/; /* lengthcount = h*w*3 */     /*private*/ var samplefac/*int*/; /* sampling factor 1..30 */      // typedef int pixel[4]; /* bgrc */     /*private*/ var network/*array*/; /* network - [netsize][4] */     /*protected*/ var netindex/*array*/ = new array();      /* network lookup - 256 */     /*private*/ var bias/*array*/ = new array();      /* bias , freq arrays learning */     /*private*/ var freq/*array*/ = new array();     /*private*/ var radpower/*array*/ = new array();      var neuquant = exports.neuquant = function neuquant(thepic/*bytearray*/, len/*int*/, sample/*int*/)     {          var i/*int*/;         var p/*array*/;          thepicture = thepic;         lengthcount = len;         samplefac = sample;          network = new array(netsize);          (i = 0; < netsize; i++)         {              network[i] = new array(4);             p = network[i];             p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;             freq[i] = intbias / netsize; /* 1/netsize */             bias[i] = 0;         }      }      var colormap = function colormap()/*bytearray*/     {          var map/*bytearray*/ = [];         var index/*array*/ = new array(netsize);         (var i/*int*/ = 0; < netsize; i++)           index[network[i][3]] = i;         var k/*int*/ = 0;         (var l/*int*/ = 0; l < netsize; l++) {           var j/*int*/ = index[l];           map[k++] = (network[j][0]);           map[k++] = (network[j][1]);           map[k++] = (network[j][2]);         }         return map;      }      /*    * insertion sort of network , building of netindex[0..255] (to after    * unbias)    * -------------------------------------------------------------------------------    */     var inxbuild = function inxbuild()/*void*/    {        var i/*int*/;       var j/*int*/;       var smallpos/*int*/;       var smallval/*int*/;       var p/*array*/;       var q/*array*/;       var previouscol/*int*/       var startpos/*int*/        previouscol = 0;       startpos = 0;       (i = 0; < netsize; i++)       {            p = network[i];           smallpos = i;           smallval = p[1]; /* index on g */           /* find smallest in i..netsize-1 */           (j = + 1; j < netsize; j++)           {               q = network[j];               if (q[1] < smallval)               { /* index on g */                  smallpos = j;                 smallval = q[1]; /* index on g */             }           }            q = network[smallpos];           /* swap p (i) , q (smallpos) entries */            if (i != smallpos)           {                j = q[0];               q[0] = p[0];               p[0] = j;               j = q[1];               q[1] = p[1];               p[1] = j;               j = q[2];               q[2] = p[2];               p[2] = j;               j = q[3];               q[3] = p[3];               p[3] = j;            }            /* smallval entry in position */            if (smallval != previouscol)            {              netindex[previouscol] = (startpos + i) >> 1;              (j = previouscol + 1; j < smallval; j++) netindex[j] = i;              previouscol = smallval;             startpos = i;            }          }          netindex[previouscol] = (startpos + maxnetpos) >> 1;         (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* 256 */     }     /*    * main learning loop ------------------    */     var learn = function learn()/*void*/      {         var i/*int*/;        var j/*int*/;        var b/*int*/;        var g/*int*/        var r/*int*/;        var radius/*int*/;        var rad/*int*/;        var alpha/*int*/;        var step/*int*/;        var delta/*int*/;        var samplepixels/*int*/;        var p/*bytearray*/;        var pix/*int*/;        var lim/*int*/;         if (lengthcount < minpicturebytes) samplefac = 1;         alphadec = 30 + ((samplefac - 1) / 3);        p = thepicture;        pix = 0;        lim = lengthcount;        samplepixels = lengthcount / (3 * samplefac);        delta = samplepixels / ncycles;        alpha = initalpha;        radius = initradius;         rad = radius >> radiusbiasshift;        if (rad <= 1) rad = 0;         (i = 0; < rad; i++) radpower[i] = alpha * (((rad * rad - * i) * radbias) / (rad * rad));          if (lengthcount < minpicturebytes) step = 3;         else if ((lengthcount % prime1) != 0) step = 3 * prime1;         else         {             if ((lengthcount % prime2) != 0) step = 3 * prime2;             else             {                 if ((lengthcount % prime3) != 0) step = 3 * prime3;                 else step = 3 * prime4;             }         }         = 0;         while (i < samplepixels)         {             b = (p[pix + 0] & 0xff) << netbiasshift;            g = (p[pix + 1] & 0xff) << netbiasshift;            r = (p[pix + 2] & 0xff) << netbiasshift;            j = contest(b, g, r);             altersingle(alpha, j, b, g, r);             if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */             pix += step;             if (pix >= lim) pix -= lengthcount;             i++;             if (delta == 0) delta = 1;             if (i % delta == 0)             {                 alpha -= alpha / alphadec;                radius -= radius / radiusdec;                rad = radius >> radiusbiasshift;                 if (rad <= 1) rad = 0;                 (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));             }         }     }     /*    ** search bgr values 0..255 (after net unbiased) , return colour    * index    * ----------------------------------------------------------------------------    */     var map = exports.map = function map(b/*int*/, g/*int*/, r/*int*/)/*int*/     {         var i/*int*/;        var j/*int*/;        var dist/*int*/        var a/*int*/;        var bestd/*int*/;        var p/*array*/;        var best/*int*/;         bestd = 1000; /* biggest possible dist 256*3 */        best = -1;        = netindex[g]; /* index on g */        j = - 1; /* start @ netindex[g] , work outwards */      while ((i < netsize) || (j >= 0))      {          if (i < netsize)          {              p = network[i];              dist = p[1] - g; /* inx key */              if (dist >= bestd) = netsize; /* stop iter */              else              {                  i++;                  if (dist < 0) dist = -dist;                  = p[0] - b;                  if (a < 0) = -a;                  dist += a;                  if (dist < bestd)                  {                      = p[2] - r;                      if (a < 0) = -a;                      dist += a;                      if (dist < bestd)                      {                          bestd = dist;                         best = p[3];                      }                  }              }          }        if (j >= 0)       {            p = network[j];            dist = g - p[1]; /* inx key - reverse dif */            if (dist >= bestd) j = -1; /* stop iter */            else            {                j--;               if (dist < 0) dist = -dist;               = p[0] - b;               if (a < 0) = -a;               dist += a;                if (dist < bestd)                {                    = p[2] - r;                   if (a < 0)a = -a;                   dist += a;                   if (dist < bestd)                   {                       bestd = dist;                       best = p[3];                   }                }            }        }      }      return (best);    }    var process = exports.process = function process()/*bytearray*/   {      learn();     unbiasnet();     inxbuild();     return colormap();    }    /*   * unbias network give byte values 0..255 , record position prepare   * sort   * -----------------------------------------------------------------------------------   */    var unbiasnet = function unbiasnet()/*void*/    {      var i/*int*/;     var j/*int*/;      (i = 0; < netsize; i++)     {       network[i][0] >>= netbiasshift;       network[i][1] >>= netbiasshift;       network[i][2] >>= netbiasshift;       network[i][3] = i; /* record colour no */     }    }    /*   * move adjacent neurons precomputed alpha*(1-((i-j)^2/[r]^2)) in   * radpower[|i-j|]   * ---------------------------------------------------------------------------------   */    var alterneigh = function alterneigh(rad/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/    {        var j/*int*/;       var k/*int*/;       var lo/*int*/;       var hi/*int*/;       var a/*int*/;       var m/*int*/;        var p/*array*/;        lo = - rad;       if (lo < -1) lo = -1;        hi = + rad;        if (hi > netsize) hi = netsize;        j = + 1;       k = - 1;       m = 1;        while ((j < hi) || (k > lo))        {            = radpower[m++];            if (j < hi)            {                p = network[j++];                try {                    p[0] -= (a * (p[0] - b)) / alpharadbias;                   p[1] -= (a * (p[1] - g)) / alpharadbias;                   p[2] -= (a * (p[2] - r)) / alpharadbias;                    } catch (e/*error*/) {} // prevents 1.3 miscompilation              }              if (k > lo)              {                  p = network[k--];                  try                 {                      p[0] -= (a * (p[0] - b)) / alpharadbias;                     p[1] -= (a * (p[1] - g)) / alpharadbias;                     p[2] -= (a * (p[2] - r)) / alpharadbias;                  } catch (e/*error*/) {}              }        }    }    /*   * move neuron towards biased (b,g,r) factor alpha   * ----------------------------------------------------   */    var altersingle = function altersingle(alpha/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/    {        /* alter hit neuron */       var n/*array*/ = network[i];       n[0] -= (alpha * (n[0] - b)) / initalpha;       n[1] -= (alpha * (n[1] - g)) / initalpha;       n[2] -= (alpha * (n[2] - r)) / initalpha;    }    /*   * search biased bgr values ----------------------------   */    var contest = function contest(b/*int*/, g/*int*/, r/*int*/)/*int*/   {        /* finds closest neuron (min dist) , updates freq */       /* finds best neuron (min dist-bias) , returns position */       /* chosen neurons, freq[i] high , bias[i] negative */       /* bias[i] = gamma*((1/netsize)-freq[i]) */        var i/*int*/;       var dist/*int*/;       var a/*int*/;       var biasdist/*int*/;       var betafreq/*int*/;       var bestpos/*int*/;       var bestbiaspos/*int*/;       var bestd/*int*/;       var bestbiasd/*int*/;       var n/*array*/;        bestd = ~(1 << 31);       bestbiasd = bestd;       bestpos = -1;       bestbiaspos = bestpos;        (i = 0; < netsize; i++)        {            n = network[i];           dist = n[0] - b;            if (dist < 0) dist = -dist;            = n[1] - g;            if (a < 0) = -a;            dist += a;            = n[2] - r;            if (a < 0) = -a;            dist += a;            if (dist < bestd)            {                bestd = dist;               bestpos = i;            }            biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));            if (biasdist < bestbiasd)            {                bestbiasd = biasdist;               bestbiaspos = i;            }            betafreq = (freq[i] >> betashift);           freq[i] -= betafreq;           bias[i] += (betafreq << gammashift);        }        freq[bestpos] += beta;       bias[bestpos] -= betagamma;       return (bestbiaspos);    }    neuquant.apply(this, arguments);   return exports; } 

javascript code seems ignore c truncates results of operations decimal numbers before assign them integer variables. so, int = 5 / 2; 2 c, var = 5 / 2; 2.5 javascript.

said that, change line:

delta = samplepixels / ncycles; 

to:

delta = (samplepixels / ncycles) | 0; 

this solves issue, it's not clear me if change solves possible integer conversion problems, or 1 exposed in question.

note have used bitwise or operator truncate result. classic way truncate number in javascript, because bitwise operators treat operands integers of 32 bits.


Comments

Popular posts from this blog

c++ - Function signature as a function template parameter -

algorithm - What are some ways to combine a number of (potentially incompatible) sorted sub-sets of a total set into a (partial) ordering of the total set? -

How to call a javascript function after the page loads with a chrome extension? -